Les meilleurs livres de mathématiques

Ici, vous pouvez vous abonner à notre site et de mettre votre e-mail au dessous et n'oubliez pas de confirmer votre inscription à travers votre email pour recevoir après toutes nos nouveautés

Corps R des nombres réels



Ce chapitre est une introduction à l’une des plus fabuleuses invention de l’homme, celle du calcul différentiel, dans le cas des fonctions de la variable réelle à valeurs réelles. L’histoire du calcul différentiel débute en grande partie avec Galilée et Newton qui avaient besoin de nouveaux outils mathématiques pour développer les notions de vitesse et d’accélération d’un mouvement. Mais la possibilité de calculer la pente de la tangente à une courbe était essentielle dans d’autres problèmes comme dans ceux d’extremum ou pour des questions plus appliquées. Newton et Leibniz furent les premiers à tenter de formaliser la notion de dérivée. Ils se disputèrent la paternité de cette invention mais il semble certain maintenant qu’ils l’ont découvert de manière indépendante et chacun via des formalismes différents. Comme expliqué dans l’introduction du chapitre 10, la notion de limite n’a été développé que bien plus tard, au 19ème siècle par Cauchy et Weierstrass aussi la formalisation de la dérivation par Newton et Leibniz souffrait de nombreuses lacunes. Newton refusa d’ailleurs de publier son travail et les écrits de Leibniz étaient obscurs et difficiles à comprendre. C’est Lagrange, un siècle plus tard qui introduit le terme de « dérivée » ainsi que la notation f ′.